UNS TEADY TEMPERATURE FIBLD IN A PLANE BOUNDED WITHIN BY A NONCIRCULAR CONTOUR

PMM Vol.37, N22, 1973, pp. 378-382

1. A. IABKO
(Moscow)
(Received January 3, 1972)
We consider a problem on unsteady propagation of heat in a plane infinite region bounded within by a convex contour Γ, on which a constant temperature u_{0} is maintained. The initial temperature within the region is assumed equal to zero. Let the equation of the contour Γ in polar coordinates have the form $r=a \gamma(\varphi)$, where a is the characteristic linear dimension of the problem.

The problem reduces to the solution of the following differential equation

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}-\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \varphi^{2}}=\frac{1}{\chi} \frac{\partial u}{\partial \tau}, \quad r>a \gamma(\varphi) \tag{1}
\end{equation*}
$$

with the initial and boundary conditions

$$
\begin{gather*}
u \rightarrow 0 \text { for } \tau \rightarrow+0, r>a \gamma(\varphi) \\
u \rightarrow u_{0} \text { for } r \rightarrow a \gamma(\varphi), \tau>0 \tag{2}\\
u \rightarrow 0 \text { for } r \rightarrow \infty, \tau>0
\end{gather*}
$$

We seek the solution of the problem (1), (2) for small intervals of time. Let u^{*} denote the Laplace transform of u with respect to $\tau, \mathrm{i}, \mathrm{e}$.

$$
u^{*}=u^{*}(s)=\int_{0}^{\infty} u e^{-s \tau} d \tau
$$

Introducing the dimensionless radius $\rho=r / a$ and using the properties of the Laplace transforms, we can write (1) and (2) in the form

$$
\begin{gather*}
\varepsilon^{2}\left(\frac{\partial^{2} u^{*}}{\partial \rho^{2}}+\frac{1}{\rho} \frac{\partial u^{*}}{\partial \rho}+\frac{1}{\rho^{2}} \frac{\partial^{2} u^{*}}{\partial \varphi^{2}}\right)-u^{*}=0, \quad \rho>\gamma(\varphi) \quad\left(\varepsilon^{2}=\frac{x}{s a^{2}}\right) \\
u^{*} \rightarrow u_{0} / s \text { for } \rho \rightarrow \gamma(\varphi) \tag{3}\\
u^{*} \rightarrow 0 \text { for } \rho \rightarrow \infty
\end{gather*}
$$

Since we solve the problem (1),(2) for small time intervals, we seek the asymptotics of the solution of (3) for $s \rightarrow \infty$, assuming the parameter ε^{2} is small; the latter appears in (3) as a multiplier of the higher order derivatives, In the present case we have a regular degeneration of the boundary value problem which was studied in detail in [1, 2]. The solution of (3) is of the boundary layer type and decays rapidly on moving away from the boundary Γ.

Let us introduce a new variable $t-[\rho-\gamma(\varphi)] / \varepsilon$ corresponding to stretching the neighborhood of Γ by $1 / \varepsilon$ times. Using the variables t and φ we can rewrite the operator appearing in the left-hand side of (3) in the form

$$
\begin{equation*}
L_{\varepsilon}=\varepsilon^{2}\left(\frac{\partial^{2}}{\partial \rho^{2}}+\frac{1}{\rho} \frac{\partial}{\partial \rho} \cdot+\frac{1}{\rho^{2}} \frac{\partial^{2}}{\partial \varphi^{2}}\right)-1=\sum_{k=0}^{\infty} \varepsilon^{k} M_{k} \tag{4}
\end{equation*}
$$

$$
\begin{gather*}
M_{0}=\frac{\partial^{2}}{\partial t^{2}}-1, \quad M_{k+1}=(-1)^{k} \frac{t^{k-1}}{\gamma^{k+1}}\left[t \frac{\partial}{\partial t}-k \frac{\partial^{2}}{\partial \varphi^{2}}\right] \tag{5}\\
(k=0,1,2, \ldots)
\end{gather*}
$$

We seek the solution of the problem (3) in the form

$$
\begin{equation*}
u^{*}=\frac{u_{0}}{s} \sum_{l=0}^{\infty} \varepsilon^{l} u_{l}^{*} \tag{6}
\end{equation*}
$$

By virtue of the linearilty of the operator L_{ε}

$$
\begin{equation*}
L_{\varepsilon} u^{*}=\frac{u_{1}}{s} \sum_{k, l=0}^{\infty} \varepsilon^{k+l} M_{k^{\prime}} u_{l}^{*}=\frac{u_{0}}{s} \sum_{m=0}^{\infty} \varepsilon^{m}\left(\sum_{k=1}^{m} M_{m-k+1} u_{k-1}^{*}\right) \tag{7}
\end{equation*}
$$

Equating to zero the terms in (7) accompanying various powers of ε and using (3), we obtain the following recurrent sequence of the boundary value problems:

$$
\begin{gather*}
M_{0} u_{0}{ }^{*}=0,\left.\quad u_{0}{ }^{*}\right|_{t=0}=1,\left.\quad u_{0}{ }^{*}\right|_{t \rightarrow \infty}=0 \tag{8}\\
M_{0} u_{m} *=-\left.\sum_{k=1}^{m} M_{m-k+1} u_{k-\mathbf{1}}^{*} \quad u_{m}{ }^{*}\right|_{t=0}=0,\left.\quad u_{m} *\right|_{t \rightarrow \infty}=0 \tag{9}\\
(m=1,2,3, \ldots)
\end{gather*}
$$

We see that $u_{0}{ }^{*}=t^{-t}$ is a solution of (8). It is a lso clear that the solution of (9) is a function of the form

$$
\begin{equation*}
u_{n} *=\sum_{l=1}^{n} a_{l}^{(n)}(\varphi) t^{l} e^{-t} \tag{10}
\end{equation*}
$$

Using (5) we rewrite (9) in the form

$$
\left(\frac{\partial^{2}}{\partial t^{2}}-1\right) u_{m}^{*}=\sum_{k=1}^{m}\left(-\frac{1}{r}\right)^{m-k+1}\left[t \frac{\partial}{\partial t}-(m-k) \frac{\partial^{2}}{\partial \varphi^{2}}\right] u_{k-1}^{*}
$$

Setting $n=m$ and $n=k-1$ in the last equation, substituting (10) into it and comparing the terms of like power in t in the left and right-hand sides, we obtain

$$
\begin{gather*}
-2 m a_{m}^{(m)}=\sum_{k=1}^{m} \frac{(-1)^{m-k}}{\gamma^{m-k+1}} a_{k-1}^{(k-1)} \tag{11}\\
(m-l+1)\left[(m-l) a_{m-l}^{(m)}-2 a_{m-l-1}^{(m)}\right]= \\
\sum_{k=2+l}^{m} \frac{(-1)^{m-k+1}}{\gamma^{m-k+1}}\left[(k-l-1) a_{k-l-1}^{(k-1)}-a_{k-l-2}^{(k-1)}-(m-k) \frac{d^{2} a_{k-1-l}^{(k-1)}}{d \Phi^{2}}\right] \tag{12}\\
(l=0,1,2, \ldots)
\end{gather*}
$$

From (11) we find

$$
-2 m a_{m}^{(m)}=-\frac{1}{\gamma} \sum_{k=1}^{m-1}\left(-\frac{1}{\gamma}\right)^{m-k-1} a_{k-1}^{(k-1)}+\frac{1}{\gamma} a_{m-1}^{(m-1)}=\frac{2 m-1}{\gamma} a_{m-1}^{(m-1)}
$$

In this manner we obtain the following recurrence relation :

$$
\begin{equation*}
a_{m}^{(m)}-\frac{1}{\gamma}\left(\frac{1}{2 m}-1\right) a_{m-1}^{(m-1)}, \quad a_{0}^{(0)}=1 \quad(m=1,2, \ldots) \tag{13}
\end{equation*}
$$

Similarly, setting in (12) $l=0, l=1$, etc. , we obtain the recurrence relations

$$
\begin{align*}
a_{m}^{(m+1)}= & \frac{3-4 m}{2 \gamma m} a_{m-1}^{(m)}+\frac{3-2 m}{2 \gamma^{2} m} a_{m-2}^{(m-1)}+\frac{1}{8 \gamma^{2} m} a_{m-1}^{(m-1)}+\frac{1}{2 \gamma^{2} m} \frac{d^{2} a_{m-1}^{(m-1)}}{d \varphi^{2}}, \quad a_{0}^{(1)}=0 \\
a_{m}^{(m+2)}= & \frac{3-4 m}{2 \gamma^{m}} a_{m-1}^{(m+1)}+\frac{3-2 m}{2 \gamma^{2} m} a_{m-2}^{(m)}-\frac{3}{4 \gamma} a_{m}^{(m+1)}+\frac{2-3 m}{4 \gamma^{2} m} a_{m-1}^{(m)}+ \tag{14}\\
& \frac{1}{16 \gamma^{2} m} a_{m}^{(m)}+\frac{1}{2 \gamma^{2} m} \frac{d^{2} a_{m-1}^{(m)}}{d \varphi^{2}}+\frac{1}{4 \gamma^{2}} \frac{d^{2} a_{m}^{(m)}}{d \varphi^{2}}, \quad a_{0}^{(2)}=0 \quad(m=1,2, \ldots)
\end{align*}
$$

Taking into account (10), let us write the sum appearing in the right-hand side of (6) in the form

$$
\sum_{m=0}^{\infty} \varepsilon^{m} u_{m}^{*}=\sum_{m=0}^{\infty} a_{m}^{(m)} \xi^{m} e^{-t}+\ldots+\varepsilon^{l} \sum_{m=l+1}^{\infty} a_{m-l}^{(m)} \xi^{m-l} e^{-t}+\ldots
$$

The following expression represents the nth approximation of the exact solution u^{*} :

$$
\left(\frac{u_{0}}{s}\right) \sum_{l=0}^{n} \varepsilon^{l} x_{l} e^{-t}
$$

where

$$
\xi=\varepsilon t, \quad x_{0}=\sum_{m=0}^{\infty} a_{m}^{(m)} \xi^{m}, \quad x_{l}=\sum_{m-l+1}^{\infty} a_{m-l}^{(m)} \xi^{m-l}
$$

We find x_{0} using (13). We have

$$
\begin{equation*}
\left(1+\frac{\xi}{\gamma}\right) x_{0}=1+\frac{1}{2 \gamma} \sum_{m=1}^{\infty} \frac{1}{m} a_{m-1}^{(m-1) \xi^{m}} \tag{15}
\end{equation*}
$$

Differentiating (15) with respect to ξ, we obtain for x_{0}, the following ordinary differential equation

$$
\begin{equation*}
\frac{\partial x_{0}}{\partial \xi}+\frac{x_{n}}{2(\gamma+\xi)}=0, \quad x_{0}(0)=1 \tag{16}
\end{equation*}
$$

from which we have

$$
x_{0}=(1+\xi / \gamma)^{-1 / 2}=(\gamma / \rho)^{1 / 2}
$$

Thus the zero order approximation to the solution of (3) is

$$
\begin{equation*}
u^{*}=\frac{u_{0}}{s}\left[\frac{a \curlyvee(\varphi)}{r}\right]^{1 / 2} e^{-[r-a \Upsilon(\varphi)] \sqrt{s / x}} \tag{17}
\end{equation*}
$$

Inversion of the Laplace transform gives the following zero order approximation to the solution of the problem (1),(2)

$$
\begin{equation*}
\stackrel{(2)}{u-u_{0}}\left[\frac{a \gamma(\varphi)}{r}\right]^{1 / 2} \operatorname{erfc}\left(\frac{r-\alpha \gamma}{2 \sqrt{x \tau}}\right) \tag{18}
\end{equation*}
$$

In the same manner we find x_{1}, x_{2}, etc. For x_{1} the differential equation in ξ has the form

$$
\begin{equation*}
\frac{\partial x_{1}}{\partial \xi}+\frac{x_{1}}{2(\gamma+\xi)}=\frac{1}{8 \gamma^{2}}\left(1+\frac{\xi}{\gamma}\right)^{-2}\left(x_{0}+4 \frac{\partial^{y} x_{0}}{\partial \varphi^{2}}\right), \quad x_{1}(0)=0 \tag{19}
\end{equation*}
$$

from which we obtain

$$
x_{1}=\frac{1}{8 \gamma}\left(\frac{\gamma}{\rho}\right)^{1 / 2}\left(1-\frac{\gamma}{\rho}\right)\left[1+\gamma^{2}\left(1-\frac{\gamma}{\rho}\right)^{2}\left(\frac{d \gamma^{-1}}{d \varphi}\right)^{2}-\gamma\left(1-\frac{\gamma}{\rho}\right)\left(\frac{d^{2} \gamma^{-1}}{d \varphi^{2}}\right]\right.
$$

Thus the first order approximation to the solution of the problem (3) is

$$
\begin{gather*}
u^{*}=\left(\frac{a \gamma}{r}\right)^{1 / 2}\left\{1+\frac{1}{8 a \gamma}\left(1-\frac{a \gamma}{r}\right)\left[1+\gamma^{2}\left(1-\frac{a \gamma}{r}\right)^{2}\left(\frac{d \gamma^{-1}}{d \varphi}\right)^{2}-\right.\right. \\
\left.\left.\gamma\left(1-\frac{a \gamma}{r}\right) \frac{d^{2} \gamma^{-1}}{d \varphi^{2}}\right] \sqrt{\frac{\bar{x}}{s}}\right\} \frac{u_{0}}{s} e^{-[r-a Y((p)] V s / x} \tag{20}
\end{gather*}
$$

Inverting the Laplace transform gives the first order approximation to the solution of (1), (2)

$$
\begin{gather*}
u=u_{0}\left(\frac{a \Upsilon}{r}\right)^{1 / 2}\left\{\operatorname{erfc}\left(\frac{r-a \gamma}{2 \sqrt{\chi \tau}}\right)+\frac{\sqrt{\kappa \tau}}{4 a \zeta}\left(1-\frac{a \gamma}{r}\right)\left[1+\gamma^{2}\left(1-\frac{a \gamma}{r}\right)^{2}\left(\frac{d \gamma^{-1}}{d \varphi}\right)^{2}-\right.\right. \\
\left.\left.\gamma\left(1-\frac{a \gamma}{r}\right) \frac{d^{2} \gamma^{-1}}{d \varphi^{2}}\right] \operatorname{ierfc}\left(\frac{r-a \zeta}{2 \sqrt{x \tau}}\right)\right\} \tag{21}
\end{gather*}
$$

The first order approximation formulas can be rewritten more simply. Let the temperature be defined at the point M and let a point P lie on Γ such, that the segment $M P$ is orthogonal to Γ. If $R=R_{P}$ is the radius of curvature of Γ at the point P and $d_{M P}$ is the distance between M and P, then the expressions (20) and (21) become

$$
\begin{gather*}
u^{*}=\left(1+\frac{d_{M P}}{R_{P}}\right)^{-1 / 2}\left[1+\frac{d_{M P}}{8 R_{P}\left(R_{P}+d_{M P}\right)} \sqrt{\frac{\bar{\chi}}{s}}\right] \frac{u_{0}}{s} e^{-d_{M P} V_{8, \chi}} \\
u=u_{0}\left(1+\frac{d_{M P}}{R_{P}}\right)^{-1 / 2}\left[\operatorname{erfc}\left(\frac{d_{M P}}{2 \sqrt{\varkappa \tau}}\right)+\frac{\sqrt{\varkappa \tau} d_{M P}}{4 R_{P}\left(R_{P}+d_{M P}\right)} \operatorname{ierfc}\left(\frac{d_{M P}}{2 \sqrt{\kappa \tau}}\right)\right] \tag{22}
\end{gather*}
$$

With the equations for x_{0} and x_{1} taken into account, the differential equation in ξ for x_{2} has the form

$$
\begin{gather*}
\frac{\partial x_{2}}{\partial \xi}+\frac{x_{2}}{2(\gamma+\xi)}=\frac{1}{8 \gamma^{2}}\left(1+\frac{\xi}{\gamma}\right)^{-2}\left[x_{1}+4 \frac{\partial^{2} x_{1}}{\partial \varphi^{2}}-\frac{x_{0}}{\gamma 1 \cdot \xi}-\frac{3}{\gamma+\xi} \frac{\partial^{2} x_{0}}{\partial \varphi^{2}}-\frac{\partial^{2}}{\partial \varphi^{2}}\left(\frac{x_{0}}{\gamma+\xi}\right)\right] \\
x_{2}(0)=0 \tag{23}
\end{gather*}
$$

Choosing the arc length λ as the parameter and attaching to the point P the value $\lambda=\lambda_{P}$, we can write the solution of (23) in the form

$$
\begin{equation*}
x_{2}=a^{2}\left(1+\frac{d_{M P}}{R_{P}}\right)^{-1 / 2}\left[-\frac{d_{M P}\left(7 d_{M P}-16 R_{P}\right)}{128 R_{P}^{2}\left(R_{P}+d_{M P}\right)^{2}}-\frac{d_{M P}^{3} R_{P}}{48\left(R_{P}+d_{M P}\right)^{3}}\left(\frac{d^{2} R^{-1}}{d \lambda^{2}}\right)_{\lambda=\gamma_{P}}\right] \tag{24}
\end{equation*}
$$

Thus the second order approximation to the solution of (3) is

$$
\begin{gather*}
u^{*}=u_{0}\left(1+\frac{d_{M P}}{R_{P}}\right)^{-\frac{1}{2} / 2}\left\{1+\frac{d_{M P}}{8 R_{P}\left(l_{P}+d_{M P}\right)} \sqrt{\frac{\bar{x}}{s}-\left[\frac{d_{M P}\left(7 d_{M P}+16 R_{p}\right)}{128 R_{P}^{2}\left(R_{P}+d_{M P}\right)^{2^{2}}}+\right.}\right. \\
\left.\left.\frac{d_{M P}^{3} R_{P}}{48\left(R_{P}+d_{M P}\right)^{3}}\left(\frac{d^{2} l l^{-1}}{d \lambda^{2}}\right)_{\lambda=\lambda_{P}}\right] \frac{x}{s}\right\} \frac{1}{s} e^{-d_{M P} V_{s / x}} \tag{25}
\end{gather*}
$$

Inversion of the Laplace transform yields the second order approximation to the solution of (1), (2)

$$
\begin{align*}
& u=u_{0}\left(1+\frac{d_{M P}}{R_{P}}\right)^{-1 / 2}\left\{\operatorname{erfc}\left(\frac{d_{M P}}{2 \sqrt{\chi \tau}}\right)+\frac{V \overline{\chi \tau} d_{M P}}{4 R_{P}\left(R_{P}+d_{M P}\right)} \operatorname{ierfc}\left(\frac{d_{M P}}{2 \sqrt{\kappa \tau}}\right)-(26)\right. \tag{26}\\
& \left.\frac{\kappa \tau}{4 R_{P}{ }^{2}}\left\{\frac{d_{M P}\left(16+7 d_{M P} / R_{p}\right)}{8 R_{P}\left(1+d_{M P} / R_{P}\right)^{2}}+\frac{d_{M P}^{3}}{3\left(1+d_{M P} / R_{P}\right)^{3}}\left(\frac{d^{2} R^{-1}}{d \lambda^{2}}\right)_{\lambda=\lambda_{P}}\right]_{i}^{i} \operatorname{erfc}\left(\frac{d_{M P}}{2 \sqrt{\chi \tau}}\right)\right\}
\end{align*}
$$

Setting now in (25) and (26) $R_{P}=a=$ const we find, that $d_{M P}=r-a$ and thus arrive at the known second order approximation formulas for the problem of propagation of heat in a region bounded within by a circle [3].

As an example, we consider the case when the contour Γ is an ellipse with the semiaxes equal to a and $1 / 2 a$, defined by the equations $x=a \cos t$ and $y=1 / 2 a \sin t$. Let the value $t=t_{P}$ correspond to the point P. Figure 1 shows the temperature distribu-
tions along the ray $P M$ orthogonal to Γ at the point P, for the values of time corresponding to $x \tau / a^{2}=0.04$ (curves 1) and $x_{t} / a^{2}=0.09$ (curves 2), and the values of t_{p} equal to $0(\mathrm{a}), \pi / 4(\mathrm{~b})$ and $\pi / 2$ (c).

Fig. 1

BIBLIOGRAPHY

1. Vishik, M.I. and Liusternik, L. A., Regular degeneration and boundary layer for linear differential equations with small parameter. Uspekhi matem. nauk, Vol. 12, N5, 1957.
2. Vishik, M.I. and Liusternik, L. A., Solution of some perturbation problems in the case of matrices and self-adjoint differential equations. Uspekhi matem, nauk, Vol.15, N23, 1960.
3. Carslow, H.S. and Jaeger, L. C., Conduction of Heat in Solids. Oxford, Clarendon Press, 1947.

Translated by L. K.

DETERMINATION OF THE FREQUENCY OF THE APPROXIMATE SOLUTION

of hill's EQUATION
PMM Vol. 37. N82, 1973, pp. 382-383
V.K.KARPASIUK
(Astrakhan')
(Received March 24, 1972)
In the theory of motion of charged particles through periodic focussing accelerators the Hill's equation is often solved using a widely accepted method of "smooth approximation". By this method the solution is represented in the form of a "slow" harmonic function with a "rapidly" oscillating amplitude. Below we derive a formula for the frequency of the slow component of such a solution. expressed in terms of the Fourier harmonics of the equation coefficient. Such a formula may find use in practical computations.

In the smooth approximation [1] which converges to the first approximation of the method of averaging [2] the solution of the Hill equation

$$
\begin{equation*}
x^{\prime \prime}+q(t) x-0, \quad q(t+T) \equiv q(t) \quad(T>0) \tag{1}
\end{equation*}
$$

is sought in the form $x(t)=[1+r(t)] X(t)$, where $X(t)$ represents a slow (compared

