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We consider a problem on unsteady propagation of heat in a plane infinite region bound- 

ed within by a convex contour l?, on which a constant temperature u. is maintained. 
The initial temperature within the region is assumed equal to zero. Let the equation of 
the contour I in polar coordinates have the form r = ay (cp), where a is the character- 
istic linear dimension of the problem. 

The problem reduces to the solution of the following differential equation 

with the initial and boundary conditions 

a + 0 for ‘t + + 0, r > ay (cp) 

u --) u. for r --f ay (cp), T > 0 (2) 
u-0 for r+m,T>O 

We seek the solution of the problem (l), (2) for small intervals of time. Let u* denote 

the Laplace transform of u with respect to z , i. e. 
m 

u* = u* (s) = 
s 

uewS’ df 

0 

Introducing the dimensionless radius p = r / a and using the properties of the Laplace 
transforms, we can write (1) and (2) in the form 

u* -+ u0 f s for p + y (cp) 
U* + 0 for p -3 00 

(3) 

Since we solve the problem (1). (2) for small time intervals. we seek the asymptotics 
of the solution of (3) for s -+ 00, assuming the parameter Ea is small; the latter appears 
in (3) as a multiplier of the higher order derivatives, In the present case we have a re- 

gular degeneration of the boundary value problem which was studied in detail in [l. 21. 
The solution of (3) is of the boundary layer type and decays rapidly on moving away 
from the boundary I’. 

Let us introduce a new variable t = [p - y (cp)l / E corresponding to stretching the 
neighborhood of P by 1 /e times. Using the variables t and cp we can rewrite the ope- 

rator appearing in the left-hand side of (3) in the form 

(4) 
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hf,, = & - 1, 
(5) 

(k = 0, 1, 2, . ..) 

We seek the solution of the problem (3) in the form 

u* z $ i E’U[* 

I=0 

By virtue of the linearilty of the operator L, 

(6) 

L,u* = ” 
s r, 

E’+‘,~\@l* = $- -g cm. ( i Mm_,+,u;,) (7) 
k, I=0 m=0 f=l 

Equating to zero the terms in (7) accompanying various powers of E and using (3), we 
obtain the following recurrent sequence of the boundary value problems : 

M”u”* = 0, u”* llzO = 1, uo* It+m = 0 (8) 

Mourn* = - 5 ‘\f,n_k+LU;ml’ urn* JiEO 10, urn* Lrn = 0 (9) 
h-=1 

(nz = 1, 2, 3,. . .) 

We see that u,,* = e* is a solution of (8). It is also clear that the solution of (9) is a 
function of the form n 

u,* E 2 ain) (cp) t’ e-’ 
(10) 

l=l 

Using (5) we rewrite (9) in the form 

Setting n = m and n = k - 1 in the last equation, substituting (10) into it and compar- 
ing the terms of like power in t in the left and right-hand sides, we obtain 

-2ma(+ i (---!I;; a&l’ (ii) 
h‘=i -I 

(m - 1 + 1) [(m - 1) a(,“_), -- 24,m_:_J = 

(1 = 0, 1, 2,...) 
From (11) we find 

77-l 

_-2ma~,mL--1 m-h--1 a(&l'f La;& ( -1) _ 2m - 1 ac_il) 

T Y T 

In this manner we obtain the following recurrence relation : 

ap - -- * ( _L- 1 ) n$;),l a(O) o = 1 
r 2m 

(m = 1, 2,. .) (13) 

Similarly, setting in (12) 1 = 0, 1 = 1 , etc., we obtain the recurrence relations 
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#+I) 
1 

3 
- 4m ,(m) + 3 - 2m .(m-0 + (m-1) ' 

Y@gq 57-l -I- 

1 &p-1) 
m-1 

_ 
m 2ym m-1 2y”rn m-2 2r2m dtp2 ’ 

ag)LO 

cm+?61 3 - 4m 
%I 

cm+l) + 3 - 2m ,(m) 3 
= 2ym %I-1 - “-2-G m 

2r2m 
a(m+l) + 2 - 3m azwl + 

4y”rn 

a(o2)=0 (m,=i, 2,. . .) 

(14) 

Taking into account (lo), let us write the sum appearing in the right-hand side of (6) in 
the form m m 05 

m=o m=o m=1+1 

The following expression represents the n th approximation of the exact solution a*: 

where 

wk==-O 712--1+1 

(I =: 1, 2, . ..) 

We find x0 using (13). We have 
cc 

(15) 

Differentiating (15) with respect to g, we obtain for x,,, the following ordinary differ- 
ential equation 

from which we have 
zo = (1 + E /@ = (7 / P)‘.‘z 

Thus the zero order approximation to the solution of (3) is 

u* L= ~0 ay 044 liz e-[l~-aY (VP)] V-/s;x 
s L ] r 

Inversion of the Laplace transform gives the following zero order approximation to the 

solution of the problem 
(18) 

In the same manner we find x1, z,,‘etc. For xi the differential equation in E has the 
form 

8x1 

z+ 2 (II‘;- E) 

=$&+)-yz~,+4~), x,(O)=0 

from which we obtain 

Thus the first order approximation to the solution of the problem (3) is 

(19) 

(20) 
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Inverting the Laplace transform gives the first order approximation to the solution 

of (1)s (2) 

The first order approximation formulas can be rewritten more simply. Let the tempera- 
ture be defined at the point M and let a point P lie on I’ such, that the segment MP 

is orthogonal to I’. If R = Rp is the radius of curvature of I‘ at the point P and dhfp 

is the distance between M and P, then the expressions (20) and (21) become 

With the equations for x,, and xl taken into account, the differential equation in E for 
4 has the form 

x2 (0) = 0 (23) 
Choosing the arc length h as the parameter and attaching to the point 1’ the value 

a = >,,,we can write the solution of (23) in the form (24) 

Thus the second order approximation to the solution of (3) is 

a* = U0 (i+ $$(l + 8RP (l;r;_ C1,,,) I/r- [ ;;:;:;(!;;;~~;J: -t 

(25) 

Inversion of the Laplace transform yields the second order approximation to the solution 

of (1). (2) 

Setting now in (25) and (26) Rp x a -mm const we find, that d,, = r ~ a and thus arrive 
at the known second order approxi’mation formulas for the problem of propagation of 
heat in a region bounded within by a circle [S]. 

As an example, we consider the case when the contour r is an ellipse with the semi- 
axes equal to o and ‘1, a, defined by the equations x = (I cos t and y L 1:z (1 sin 1. Let 
the value t = tp correspond to the point P . Figure 1 shows the temperature distribu- 
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tions along the ray ~~11 orthogonal to I’ at the point P, for the values of time corre- 
sponding to x’t / a2 = 0.04 (curves 1) and XT I a2 = 0.09 (curves Z), and the values of 

tp equal to o(a),n /4(b) and n/2(c). 

Fig. 1 
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In the theory of motion of charged particles through periodic focussing accele- 
rators the Hill’s equationis often solved using a widely accepted method of 
“smooth approximation”. By this method the solution is represented in the form 
of a “slow” harmonic function with a “rapidly” oscillating amplitude. Below we 

derive a formula for the frequency of the slow component of such a solution, 
expressed in terms of the Fourier harmonics of the equation coefficient. Such a 
formula may find use in practical computations. 

In the smooth approximation [l] which converges to the first approximation of the 

method of averaging r2] the solution of the Hill equation 

5” + p (t)z I= 0, CI (t + 0 f (I (t) (T> 6) (1) 

is sought in the form z (t) = [I + r (t) IX (t), where X (t) represents a slow (compared 


